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Quantum field theory for non-polynomial chiral lagrangians 

J G Taylor 
Department of Mathematics, King’s College, University of London, Strand, London 
WC2R 2LS. UK 

Received 31 July 1973 

Abstract. We deduce Green function equations and perturbation rules for chirally-invariant 
quantum field theory. The ordering problem is treated by a suitable time-like averaging in 
the qperator interaction, which at the same time prevents any occurrence of S4(0) terms and 
removes ambiguities in (63(0))2 terms; these latter are known to cancel to lowest order. We 
also present an equivalent lagrangian formulation which leads to the same results. 

1. Introduction 

There has been considerable progress recently in setting up quantum mechanics of 
chiral dynamics. The main problems in this program arise from the quadratic appearance 
of derivatives in the interaction term in the standard non-polynomial form of the classical 
chirally-invariant lagrangian (Barnes and Isham 1970) : 

+gijaf14ia+p. (1.1) 

Quantization of such a classical lagrangian presents many difficulties, ultraviolet and 
infrared divergences causing problems as well as the ordering and quadratically deriva- 
tive interaction questions. However, it is necessary to set up the quantization program 
in as completely a consistent fashion as possible before we can properly attend to the 
divergence problem. This paper is devoted to that initial step. We will try to determine 
all the possible contributions which enter in Feynman diagrams, be they infinite or not. 
We will then give a brief description of how certain of the divergences discovered may be 
satisfactorily dealt with. 

Let us start with the question of ordering. A hamiltonian approach has been followed 
by Charap (1973), who has shown that the requirement of chiral invariance determines 
the order of the non-commuting factors in the interaction completely and specifies the 
hamiltonian uniquely to within a unitary transformation. This uniqueness has been 
extended to the form of the energy-momentum tensor (Parish 1973) and to a possible 
set of Feynman rules (Davies 1973). An alternative approach to the ordering problem 
has been made by Bloore and his colleagues (Bloore and Routh 1973, Bloore et a1 1973) 
using Frechet derivatives applied directly to the lagrangian. It is of interest to relate 
these two approaches, and furthermore develop Green function methods which allow 
perturbation theory rules to be explicitly derived. 

We will first set up the equations for Green functions which follow from the sym- 
metrized lagrangian of Charap. In the process we will find known terms proportional to 
d4{O) arising, along with those involving (S3(0))’. It is these latter terms in which we are 
most interested, for the ordering problem, especially since they must not appear in any 
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finite predictions for S matrix elements. To discuss their disappearance in perturbation 
theory we will set up a functional differential equation for the generating functional of 
Green functions and solve it by functional Fourier transform techniques. I t  is at this 
stage that we can recognize an effective lagrangian. We then consider perturbation 
theory rules and the possible cancellation of terms proportional to S4(0) and (S3(0))2 in the 
effective lagrangian. The explicit removal of the S4(0) terms is described here using an 
averaging process which prevents any appearance of them, but that of the (S3(0))' 
terms appears to involve much more of the dynamics than can be incorporated by our 
techniques. However, we show that our averaging process, necessary for a suitable Green 
function formulation of the properly-ordered field equations, leads to an unambiguous 
evaluation of (S3(0))2 contributions of particular Feynman diagrams. This leads to the 
expectation that all S4(0) and (S3(0))' are completely cancelled in perturbation theory. 
The ground is thus basically cleared for discussion of ultraviolet and infrared divergences. 

We then turn to the question of a lagrangian formulation of the theory, and show 
how the Frechet derivative method (Bloore et a1 1973) allows for a complete derivation 
of the Green function and perturbation results from a lagrangian as compared to a 
hamiltonian starting point. 

2. Green functional equations 

We will take a four-dimensional chiral theory of mesons with symmetric hamiltonian 

d3~(g{+i{pj, g">) +fV@. V@gi,+ V )  (2.1) 

where 

v = 8 ~ ~ ( 0 ) ) ~ f , ~ . ~  fa'.j (2 .2 )  

[$'(XI, P ~ ( Y ) ]  - = i6ijS3(x -.Y) 

Pi = i { g i j ,  4') (2.4) 

(2.3) 
. .  

and { A ,  B }  = A B + B A ,  [ A ,  B]  = A B - B A .  
We take the form of hamiltonian without the arbitrary function h ( 4 )  of Charap (1973), 

though our discussion can easily be amended to include that term ; we use the notation of 
Charap's paper. The extra term I/ allows H to be explicitly chirally invariant. The field 
equations which follow from (2.1) to (2.4) are 

f l g i j ,  dil + + { f g i j , l ,  $'}VI 
= -4V4' .  v$jglj,i- y i - & { p j , g L j , i } }  + v .  (vq5jgij) (2.6) 

where V i  = aV/ab' and we use that for any suitably well-behaved function f of 4 

df/dt = f = *{ . f i  > di) (2.7) 
(as can be easily obtained by expandingf(4) in a power series in its variable). We rewrite 
(2.6) in a form involving only 4 and its derivatives by means of (2.4): 
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with 
r.. =g . .  -ig. .  r j k  r1.k Jk,! (2.9) 

where we use the canonical commutation relations and the consequent relation 

to derive for Wi the value 

(2.10) 

(2.1 1) 

We note here the difference between the expression for r i j k  given by (2.9) and its usual 
value 3(gij,k + gik,j- gjk,i), the difference only arising in the time derivatives due to the lack 
of commutativity between the various components 4' for different 1. 

From the field equation (2.8) and the commutation relation (2.10) we may attempt 
to derive the Green functions equations by the usual techniques. We do this by means of 
the generating functional G(J) of the Green functions, defined as usual by 

(2.12) 

The Green functions T'~-."~(X . . . x,) = (OIT(@'(xJ. . . @n(xn))lO) which are generated 
by G(J) are assumed to be well defined, though we cannot expect that is the case if time- 
ordered products of the non-commuting fields 4 and (f, at the same time values are 
involved. We may avoid the resulting ambiguity by a symmetrization procedure. Thus if 
we consider in particular the ambiguous time-ordered product 

G(J) = (01 T[ex~(i  J Ja(X)4"(X) d4x)I IO> * 

the ambiguity of the ordering on the right-hand side of (2.13) can be removed if we 
define the left-hand side by a limiting procedure thus : 

lim - igij - i6/6J(x)) 0 6/6J,4x + EMJ) = (01 g,W, 04'(x)} exp(i J4 d4y)l lo> 
t-0 

(2.14) 

where the symbol limc-.o denotes an average over time-like infinitesimal four-vectors e, 
and we have neglected the S4(0) term arising on the right of (2.14) for the moment. 

We will use the time-like average over E from now on, though not explicitly indicate it, 
so that when formulae with E appear, such an averaging process is to be taken at the end 
of all other operations. 

We note that the right-hand side of (2.14) is still not well defined due to the non- 
commutativity of 04 with the exponential involving 4 at coincident points ; the time- 
ordering symbol T has not been defined to take account of such an ambiguity. However, 
a similar difficulty arises even in quantum field theories without derivative coupling ; the 
situation is saved by the use of the field equations to replace the troublesome 04 by a 
polynomial in the fields 4. These commute with other fields entering at the same point, so 
removing any ambiguity. We will use the same approach here. 

We now wish to use the field equation (2.8) to derive a functional differential equation 
for G(J). To take account of the ordering in (2.8) correctly, especially that of the double 
commutator bracket of the second term, we will have to extend the symmetrization 
procedure of (2.14). Let us first define the time-like averaged limit of the left-hand side of 
(2.14) in more detail. Thus we define, for general non-commuting operators f, g inside a 
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time-ordered product : 
c1 

15 

(2.15) 

where 
o(A, c) = (A€, 0). 

Iff and g are smooth in their variables, in some sense, we expect (2.15) to give the 
symmetrized product *{ f(x), g(x)}. We extend this to the case of three non-commuting 
operators f, g, h inside a time-ordered product. Thus 

+ l  

lim f(x)g(x + c)h(x + E’) = lim 
f . C ’ + O  € , f ’ + O +  JJf= - 1 

f(x)g(x + 4 2 ,  c))h(x + w(,l’, c’)). 
€‘> € 

(2.16) 

We have chosen the range of integration on the right-hand side of (2.16) so that for 
reasonably smooth functions f, g and h the right-hand side of (2.16) becomes 

i{{f(x), d x ) f W ) .  
We may now use the field equation (2.8) and the commutator (2.10) to obtain the 

Green functional equation 

lim { - igiA - id/dJ(x)) 6/6J(x + E) + w( - id/SJ(x)) - J ~ ( X  + t) 
t , f ’ + O  

- rijk( - id/6J(x))aP6/dJ,(x + E)~~B/BJ~(X + c’)}G(J) = 0. (2.17) 

Naturally the double limit procedure of (2.16) is only applicable to the second term 
in (2.17). Nor do we obtain the usual term containing d4(0) in (2.17), since the two time 
derivatives in the second term of (2.17) are evaluated at different points x + d A , c ) ,  
x + o(A’, E’). If we had allowed c = c’ then this singular term, actually equal to 

(2.18) 

would have to be added to (2.17). This term has in any case been shown to cancel to all 
orders with singular parts of perturbation graphs (Keck 1971), but there are very specific 
terms left behind. We will have to show that the absence of the explicit appearance of the 
d4(0) term in our equation (2.17) still allows for the complete and correct removal of the 
further terms containing d4(0) generated by perturbation theory ; we will only be able to 
do that once we have obtained the full perturbation theory rules so that these further 
terms can be obtained explicitly. 

Before we do that we note that the ambiguity of ordering still present on the right- 
hand side of (2.14) is removed in (2.17) provided the first and fourth terms are treated 
together, giving an unambiguous operator equal to the third and second terms, by 
the field equations. Thus we must derive perturbation rules in which the first and fourth 
terms are automatically combined together. This we now do. 

3iS4(0) Tr In g( - id/GJ(x)),iG(J) 

3. Thc functional integral solution 

To proceed towards perturbation rules it is useful to solve (2.17) by a formal functional 
Fourier transform : 

dKj(x) exp(iJ J,(x)Kj(x) d4x)G(K) (3.1) 
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so that (2.17) becomes 

lim [g,jK(n)) 0 K’(x + e )  - rijk(K(n))a,Kj(x + e)PKKk(x +e’ )  + K ( K ( n ) )  
t , r ’ + O  

+ i6/6Kj(x + c) ]G(K)  = 0 (3.2) 

with solution, to within a normalization factor, which is 

d4x[-@,Ki(x + e)gij(K(n))aaK’(x + E ’ )  - W(K(n))]  (3.3) 

That (3.3) does actually satisfy (3.2) in the appropriate limits c, e’ + 0 is shown by 
explicit calculation, using the rules (2.15) and (2.16) and that 

together with the operator form of G 

the meaning given to the 6 function in the right-hand side of this latter expression being 
by Taylor expansion in powers of the operator 4’. What results from such a calculation 
is that G(K,  E ,  e ’ )  of (3.3) satisfies a functional differential equation which, for the limits of 
e and c’ tending to zero as defined by (2.15) and (2.16), is identical to (2.17). We thus 
consider c ( K ) ,  defined by 

as the appropriate Green functional for the chiral field theory with hamiltonian (2.1). 
The limits in (3.4) are only to be taken at the very end of any calculation of Green func- 
tions. 

We may regard these Green functions arising from the effective operator lagrangian 

(3.5) L = $({gij, a,+i}aP$j} - w 
where W i  = w, with W being well defined. We have not shown that if we started from L 
of (3.9, now regarded as an operator lagrangian, we would obtain (2.8) as the Euler- 
Lagrange variational equations. To show that we will have to discuss non-commuting 
variations; we return to this question later. But first we will consider the functional 
integral solution (3.1), (3.3), (3.4) more completely so as to put it into a form where we can 
analyse the terms containing d4(0) in a more explicit fashion. At the same time we will 
obtain an expression for the S matrix from which the perturbation rules may be read off 
directly. 

To proceed we write 

L = :a,K’6,,a’K’ + Lint 

Lint = &K’(x + c) [gij(K(n)) - dij]arKj(x + c’) - W(K(n)).  

with 

Then, as usual (Fried 1973) 

G(J)  = exp(i J Lint( - i6/6J(x)) d4x) exp(3iJD.l) 
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where 

JDJ  = J'(x)D(x - y ) J ' ( y )  dx dy (3.8) s 
and OD(x) = S4(x). 

rewrite (3.7), using the rearrangement formula (Fried 1973) extended to derivatives, 
We can put this into a form more amenable to determining the required terms if we 

exp[{i(JDJ)] exp(*is/sAf,o,,,s/sAf, - i6/6Af,D,,6/6Ai 

-ii6/6AiD6/6A') exp(i J AfqJjAj,,) (3.9) 

where 

f.. 11 = g..-6. .  11 11' OA' = J ' ,  A',, = ?AiIFxp, 

D,p = dD/dP ,  D,,, = 22D/13~qd.~". 

We understand in (3.9) that A and A,, are to be regarded as independent variables until 
all the functional derivatives have been performed as indicated. We may then replace A,, 
by 3,A/I3xp evaluated at x + E, x + E' respectively (in the last factor in (3.9)), the time-like 
average over E, E' being taken finally in the manner prescribed in (2.15) and (2.16). 

We perform the derivations with respect to A , p  explicitly in (3.9) to give (Fried 1973) 

G(A) = exp(*iJDJ) exp( -)i6/6A'D6/6Ai) exp[&(A,, - iD,,6/6A)f( 1 + D,,, ,f)-  l,, 

x (A,, - iD,,6/6A) - 3 Tr In( 1 + D ,.., f) - i W(A)]. (3.10) 

The explicit E, c' dependence in (3.10) has been suppressed, but is given in detail by 
replacing f(x) throughout (3.10) by the kernel F,, given by 

F,., = d4zf(z)h4(x - z - E ) ~ ~ ( J J  - z - E'). I (3.11) 

Further we note that the excluded S4(0) term would have given the contribution 

)S4(0) In det g(A) 

in the last exponential on the right-hand side of (3.10). The chiral indices on the variables 
A,,, f have been dropped for simplicity in the term in (3.10) but should be understood as 
being present implicitly from now an. 

The formula (3.10) allows a direct perturbation interpretation in the usual manner, 
the first factor on the right-hand side being the set of free-particle contributions which 
are modified by the action of the second factor operating on the third. An interpretation 
of this latter has already been given, in terms of the supergraphs arising from the expan- 
sion of the third exponential in (3.10) in a power series (Keck and Taylor 1971). The 
supergraphs are those expected from the classical chiral lagrangian (1.1) each supergraph 
of N vertices having the interaction part Lj assigned to the vertex along with a pair of 
double lines, these latter corresponding either to an external line coming from A,p or an 
internal one from an end of D , p v .  The double lines will form continuous non-intersecting 
curves from the expansion of the denominator in the third line of (3.10), each line ending 
externally with A , p  or  being attached through a half-double line D , p  to another vertex. 
There will also be closed loops of double lines arising from the Tr In term in (3.10), along 
with other vertices each comprising the term proportional to S4(0) (if it had been allowed) 
or the additional potential term W ( A )  containing (S3(0))2. The second factor in (3.10) 
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will cause single lines to join all of these vertices in all possible ways as is usual in perturba- 
tion theory for non-polynomial lagrangian theories. The z, z' dependence is made 
explicit in these perturbation rules if we take the double line contribution from x to y to 
be given by 

(3.12) D,,,(x + C' - .Y - Z) 

as follows immediately from (3.11). 
The resulting perturbation rules do not seem to agree with those of Davies (1973) 

due to omission of all the terms but Jfi in w.. Our approach contains no ambiguities; 
we can only conclude that the extra terms we have found here arise by a more careful 
treatment in Davies' discussion along the lines of Gerstein et a1 (1971). 

In detail our perturbation diagrams thus have extra vertices, beyond those of 
Davies, due to the non-polynomial non-derivative interaction term in the lagrangian 
equal to U(K) ,  where 

= ~ S 3 ( o ) ) 2 g " , m ( g " g j k , i ) , l .  (3.13) 

This term has arisen due to the transformation from the fields K' and momenta p i  af 
8 2 to the fields K' and their time derivatives ; this extra term is apparent in comparison 
of (2.1) and (2.8). This change of variables cannot be as straightforward as is claimed by 
Davies, who neglected any problem of ordering in making it to obtain his perturbation 
theory rules. 

This can be seen in detail in setting up the usual transformation U(t ,  to)  from p i  to 
ki; in the interaction representation the relevant equation, in terms of U, is equation 
(2.11) of Davies (1973) which becomes 

(3.14) 

where the carets denote Heisenberg picture operators. This evidently has the solution 
U j i U - '  = ki if the ordering in the second term on the right-hand side of (3.14) is 
neglected. Correct account of the ordering produces the term U given by (3.13). 

4. Cancellations 

The quartic divergences arising from the closed double line loop factor are known tb 
cancel the term proportional to S4(0) exactly (Keck 1971), provided this term arises. Our 
analysis of the previous two sections has not required any such contributions. To show 
that the terms involving S4(0) generated by the perturbation rules are also absent in our 
approach it may be helpful to give here the argument for the complete cancellation of the 
S4(0) terms. So we will use (3.10) with z and z' set zero for the present. We can write the 
vacuum double loop term in (3.10) as 

1 
n $ l  n 

- f Tr w +  D ,... f) = -4 - T r W  (... fY1. (4.1 ) 

We evaluate the divergences in each term on the right-hand side of (4.1) by Fourier 
transformation : 
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where x1 = x , + ~  and q1 = q n + l ,  qo = 4,. Then q r + l  = q r + p r L l ,  and if we use the 
variable q = q, then (4.2) becomes 

Expressing the numerator of (4.3) in terms of Pr = Cj= pj and then the integrand of 
(4.3) as a power series expansion in inverse powers of q gives for (4.2) the expression 

(4.4) 

If we neglect all except the quartic divergence in (4.4) then 
n 

D,plp2(xl - X ~ ) D , ~ ~ ~ ~ ( X ~ - X ~ ) .  . . D , p , , " l ( ~ n - ~ l )  = d4(0) n d4(x1 - x j )  (4.5) 
j =  2 

where we have defined d4(0) = ( 2 7 ~ ) - ~ J d ~ q .  Thus the contribution of the quartic 
divergence from the closed double line loops will be 

l P  

This is seen to cancel identically the term explicitly proportional to a4(0) which we 
excluded from (3.10). We can also evaluate the quadratically and even logarithmically 
divergent terms of (4.1) from (4.4) on inclusion of the O(q-4) term. However, their 
cancellation is not obvious, and we will turn now to the cancellation of the term (4.6) 
in our more careful analysis of (3.10) keeping the limiting procedure of c and c' tending 
to zero. 

If we include the E and E' dependence of (4.1) then we need to include on the right- 
hand side of (4.2) the additional factor 

j =  1 
(4.7) 

This produces the extra factor in (4.3) equal to 

e x p { i ( c - c ' ) [ n q + n p , + ( n - l ) ~ , +  . . .  +pnI). (4.8) 

Using the expansion of (4.4) the quartic divergence of the unambiguous form of (4.1) is 

- 3d4(c - c') Tr In g 

which is zero as c, E' + 0 if the limiting prescription of fj 2 is used, with c # E'. Thus 
there is no term proportional to S4(0) in the perturbation expansion for the Green 
functions, either arising explicitly from the quadratic derivative interaction or from 
closed loops of twice-differentiated propagators. 

We are still left with the term Win (3.10) which is proportional to (S3(0))*. 
The question of cancellation of this term has already been discussed in the lowest 

non-trivial order (Suzuki and Hattori 1972), where a complete cancellation was obtained. 
We would like to show such a cancellation, but now extended to terms of all order, 
possibly along the lines of the preceding removal of the d4(0) term. The discussion of 
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the lowest order perturbation theory generation of the (S3(0))’ term shows that such 
a term arises from singular products of the form 

D,,v(x)D,,v(x)D(x). (4.9) 

This term was evaluated by Suzuki and Hattori (1972) by using the correct expansion 

2,SVD = - 6,06v084(x) + - k,kv(8(x,) e-ikX+e( -x,) eikx).(4.10) 

The product of (4.9) involves the ambiguous product O(x,)S(x,), which was taken to 
be @(x,) by Suzuki and Hattori without very strong grounds. The presence of E and e‘ 
should allow us to obtain an unambiguous value for this product. We have to calculate 

(4.11) 

When this product is evaluated by (4.10) the crucial factors to be averaged over suitable 
time-like directions of e and E’ according to (2.16) are - e,)  or e(€, - E;); it is almost 
immediate that these each average to give the factor +; so agreeing with Suzuki and 
Hattori but also giving a more careful analysis of the reasons for this result. By their 
analysis there is cancellation between the (S3(0))’ contribution in (4.1 1) and that arising 
from the term of appropriate order in W. 

We can see this most clearly from the use of Weinberg coordinates, for which 

D,,,(x + E - E ’ ) D , ~ ~ ( x  + E’ - E)D(x). 

g . .  I J  = J..@.-’, IJ g’J = Sija), a) = (4A24’)’ (4.12) 

for which 

w =  - + ( s 3 ( 0 ) ) 2 ~ 4 4 2  + O(P)  (4.13) 

on dropping a constant term. But we see from (3.4) that the term W is just the same 
as that resulting from the calculation of Suzuki and Hattori for the (S3(0))’ term in 
their effective hamiltonian (4.18) (Suzuki and Hattori 1972). Since the (S3(0))2 contribu- 
tion from the perturbation graphs due to twice-differentiated propagators are to be 
calculated by exactly the symmetrization prescription O(x,)S(x,) = +S(x,) of Suzuki and 
Hattori then the cancellations of the (S3(0))’ terms found in that paper are preserved. 

The difficulty in evaluating all such (S3(0))’ terms completely is that they apparently 
involve a great deal of the detailed dynamics not made explicit in the expression (3.10). 
Removal or prevention of the S4(0) terms only required discussion of closed-loops of 
double lines. It is necessary to go beyond that to include the non-derivative terms to 
obtain the coefficients of the various terms like (4.11). This appears to require almost 
a complete solution of the perturbation expansion, and so need a great deal of further 
work. Thus while we expect an exact cancellation of all of the (S3(0))’ terms in the 
final expression for S matrix elements we cannot show that occurs by the methods 
developed here. 

5. Lagrange equations 

The canonical quantization procedure is the standard one to apply to a classical field 
theory, starting from a lagrangian L(4,  13~4). The Euler-Lagrange variational equations 
are then the quantum field equations, the operator structure being ensured by the 
canonical commutation or anticommutation relations, between the fields 4 and their 
canonical momenta dL/d& There is a crucial difficulty in this approach when L involves 
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a quadratically derivative interaction, since then the variational equation is not well 
defined. This problem has recently been discussed by Bloore and his co-workers 
(Bloore et ai 1973, Bloore and Routh 1973) who used the Frechet derivatives, for a 
special class of variations, in order to derive equations of motion consistent with the 
symmetry present in the lagrangian. 

The lagrangian approach is of value in that it leads rapidly to perturbation rules 
which are explicitly covariant. This is certainly true for the chiral interaction considered 
here, though our derivation of the Green function equations in 0 2 soon removed this 
blemish. But in a theory in which the symmetry group causes great difficulty in the 
hamiltonian approach, as for example in general relativity, it appears advantageous 
to construct a quantization procedure which uses purely the lagrangian formulation. 
We will now attempt to develop such an approach for the chiral theory considered so 
far in this paper. 

Our main problem is that the quantum lagrangian L associated with the classical 
hamiltonian (2.1) (with the term I/ removed) is not uniquely defined due to the ordering 
problem. We attempt to resolve this ambiguity by requiring invariance of L under the 
class of Killing vector displacements : 

&$ = fp (5.1) 

= + { j - ~ . ~ ,  4j,,p+f:s,ea (5.2) 

and the associated displacement of the derivatives 

wheref: are the Killing vectors associated with the metric g i j  and depend only on the 
field components 4' at the space-time point, while the 8" are arbitrary c number functions 
of space-time. 

We take the lagrangian, from ( 3 3 ,  to be 

L = $ { ( g . .  ' J '  @>&) - i g i j v 4 i .  v 4 j -  w. (5.3) 

The equations of motion which arise from the variational equation 6L = 0 for (5.3), 
under the variations (5.1) and (5.2),  are 

(5.4) 

where the bracket expression (i?L/aq, b )  is the result of the operation of the Frechet 
derivative dL/dq acting on the operator b, as used by Bloore and collaborators (Bloore 
and Routh 1973, Bloore et ai 1973). An integration by parts allows us to rewrite (5.4) 
as the usual Euler-Lagrange equations 

We may use the fact that ZL/ddk is the momentum P k  of (2.4) and the equation of motion 
(2 .5 ) .  (2.6) and (2.8) to replace the second term on the left-hand side of ( 5 . 5 )  by 

i i { g i j , k ,  z p 4 i > z p + j } -  W, 
which is equal to the first term in (5 .5 )  by direct computation. Thus the lagrangian (5.3) 
gives variational equations of motion for the fields agreeing with the hamiltonian 
equations of motion. This is in disagreement with the remarks of Charap (1973), but 
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we are using here that the only vector upon which w k  of (2.11) can depend is 4k, so 
that there is some function f(4’) for which 

w k ( 4 )  = f(4’Wk. (5.6) 

Thus the consistency condition for integrability of w k  

wk,l = q > k  

is automatically satisfied, and 

(5.7) 

We further remark that the form (5.3) of the lagrangian gives an action which auto- 
matically possesses the symmetry of the theory under the transformations (5.1) and 
(5.2) since constant 8” cause equation (5.4) to reduce exactly to the invariance condition. 
Finally we note that the perturbation rules will be exactly the same as before, the 
operator ordering in (5.3) having to be handled as before, so leading to total cancellation 
of S4(0) terms and unambiguous evaluation and cancellation of lowest order (S3(0))’ 
terms. 

It is possible to start from the lagrangian, of(5.3), chosen as the unique form possessing 
invariance under (5.1) and (5.2), and deduce the hamiltonian (2.1) by requiring it to 
give the same equation of motion as (5.5).  This lagrangian approach may be of great 
help in discussing the ordering problem in such theories as quantized gravity ; we hope 
to discuss this elsewhere. 

I equations I 
functional 
equations 

functional 
solutions 

perturbation 
rules 

Figure 1. Flow chart showing the logical connection between the various steps in deriving 
perturbation rules for a chirally invariant quantum field theory. 
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We finally present, in figure 1, a flow chart of the various methods of approach to a 
unique perturbation theory ; from the symmetry group we derive equivalent hamiltonian 
and lagrangian schemes which lead to perturbation rules by the methods we have 
outlined in the previous sections. 
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